FC 159 - Polynomial Adjustment (IMAMM03)

The polynomial adjustment function code defines a fifth order polynomial equation:

 

Y = Ax5 + Bx4 + Cx3 + Dx2 + Ex1 + F

 

A range of 165 through 196 can have up to 32 blocks defined.  Enhanced analog point definition blocks (function code 158) can link to this block. Linking function codes 158 and 159

results in a polynomial adjusted input. A coefficient mantissa of 0.0 effectively removes that term from the equation.

 

NOTE: Even though only 32 blocks can be defined, all 64 blocks can be adjusted. Due to memory limitation on the AMM module, only 32 unique adjustments can be defined. Thus, two or more

blocks must share the same scaling factors (i.e., the same function code 159) to adjust all 64 inputs on the AMM module.

 

 

Outputs:

Blk

Type

Description

N

R

No useful output

 

 

Specifications:

Spec

Tune

Default

Type

Range

Description

S1

Y

0.000

R

Full

A coefficient mantissa

S2

Y

0

I

Full

A coefficient exponent

S3

Y

0.000

R

Full

B coefficient mantissa

S4

Y

0

I

Full

B coefficient exponent

S5

Y

0.000

R

Full

C coefficient mantissa

S6

Y

0

I

Full

C coefficient exponent

S7

Y

0.000

R

Full

D coefficient mantissa

S8

Y

0

I

Full

D coefficient exponent

S9

Y

0.000

R

Full

E coefficient mantissa

S10

Y

0

I

Full

E coefficient exponent

S11

Y

0.000

R

Full

F coefficient mantissa

S12

Y

0

I

Full

F coefficient exponent

S13

Y

0

I

Full

Pre-scale exponent

 

NOTES:

1.

A = S1 x 10S2

B = S3 x 10S4

C = S5 x 10S6

D = S7 x 10S8

E = S9 x 10S10

F = S11 x 10S12

X = Input x 10S13

 

2.

To generate a negative exponent, add 256. For example, for an exponent of -1 for term A (S2):

((-1) + 256) = 255

S2 = 255

 

 

Value of Exponent

Value of S2

0

0

-1

255

-2

254

-3

253

.

.

.

.

.

.

-20

236