# FC 159 - Polynomial Adjustment (IMAMM03)

The polynomial adjustment function code defines a fifth order polynomial equation:

Y = Ax5 + Bx4 + Cx3 + Dx2 + Ex1 + F

A range of 165 through 196 can have up to 32 blocks defined.  Enhanced analog point definition blocks (function code 158) can link to this block. Linking function codes 158 and 159

results in a polynomial adjusted input. A coefficient mantissa of 0.0 effectively removes that term from the equation.

NOTE: Even though only 32 blocks can be defined, all 64 blocks can be adjusted. Due to memory limitation on the AMM module, only 32 unique adjustments can be defined. Thus, two or more

blocks must share the same scaling factors (i.e., the same function code 159) to adjust all 64 inputs on the AMM module. Outputs:

 Blk Type Description N R No useful output

Specifications:

 Spec Tune Default Type Range Description S1 Y 0.000 R Full A coefficient mantissa S2 Y 0 I Full A coefficient exponent S3 Y 0.000 R Full B coefficient mantissa S4 Y 0 I Full B coefficient exponent S5 Y 0.000 R Full C coefficient mantissa S6 Y 0 I Full C coefficient exponent S7 Y 0.000 R Full D coefficient mantissa S8 Y 0 I Full D coefficient exponent S9 Y 0.000 R Full E coefficient mantissa S10 Y 0 I Full E coefficient exponent S11 Y 0.000 R Full F coefficient mantissa S12 Y 0 I Full F coefficient exponent S13 Y 0 I Full Pre-scale exponent

NOTES:

1.

A = S1 x 10S2

B = S3 x 10S4

C = S5 x 10S6

D = S7 x 10S8

E = S9 x 10S10

F = S11 x 10S12

X = Input x 10S13

2.

To generate a negative exponent, add 256. For example, for an exponent of -1 for term A (S2):

((-1) + 256) = 255

S2 = 255

 Value of Exponent Value of S2 0 0 -1 255 -2 254 -3 253 . . . . . . -20 236